www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

oG

K.NarendraKumar,
Associate professor cse
Chalapthi Institute of Engineering and Technology, lam,Guntu,india

Abstract

5G stands for the fifth generation and refers to the next and newest mobile wireless standard based on the IEEE
802.11ac standard of broadband technology. 5G technology is expected to be faster, have fewer dead zones and
end data caps on cellular contracts.

Introduction
G stands for a generation of mobile communication technology which is used in the mobile phones for
communication. Different generations have different advances in technology. Basically, 1G was/is a voice-only
phone, commensurate with those brick-like devices of the 80's. You'd be dealing with poor voice quality and
that and poor battery life.
2G (aka Global system for mobile communication) denotes the transition from analog to digital in 1991, and the
introduction of call and text encryption, plus data services like SMS, picture messages, and MMS. Then there's
a bit of a nexus between 2G and 3G, with the interim 2.5G and 2.75G, making it possible to access the web
pages via a mobile phone. 3G was developed in 1998 and upgraded audio and video meant better voice calling
quality. 3G also brought faster data-transmission speeds making video calling and mobile internet more viable.
3.5G and 3.75G bought faster data processing and reduced latency.
Now, we're at 4G. 4G is up to 10 times faster than 3G services. Sprint was the first carrier to offer 4G speeds in
the U.S. beginning in 2009. While all 4G service is called 4G or 4G LTE, the underlying technology is not the
same with every carrier. Some use WiMax technology for their 4G network, while Verizon Wireless uses a
technology called Long Term Evolution, or LTE.
So, What's So Good About 5G?
5G technology is expected to be faster, have fewer dead zones and end data caps on cellular contracts. The
GMSA (The body behind MWC) specifies that to qualify for a 5G a connection should meet most of these eight
criteria:

e One to 10Gbps connections to endpoints in the field

e One millisecond end-to-end round-trip delay

e 1000x bandwidth per unit area

e 10 to 100x number of connected devices

e (Perception of) 99.999 percent availability

e (Perception of) 100 percent coverage

e 90 percent reduction in network energy usage

o Up to ten-year battery life for low power, machine-type devices
When you consider the sheer number of devices connected to the web including mobiles, wearable tech, AR
and VR devices needs to accommodate increased traffic at greater speed but also be able to provide broader
coverage for loT devices (and we're not even at autonomous car stage yet.) If you want to stream video
seamlessly, play a VR game or receive real-time insights, these are the kind of capabilities that 5G promises to
achieve.

IJCRT1802732 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 339

http://www.ijcrt.org/
https://www.lifewire.com/what-is-4g-wireless-577577
https://www.gsmaintelligence.com/research/?file=141208-5g.pdf&download

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

The official 5G standard has not yet been established. As noted by Engadget, The International
Telecommunication Union has published draft 5G specs that set performance expectations. Users should get
100Mbps download speeds and 50Mbps for uploads -- unlike with LTE, though, that's more of a consistent
baseline than a theoretical maximum. Consumers should also see an extremely low lag of no more than 4ms
(versus 20ms for LTE), and service should work on trains traveling as quickly as 500km/h (311MPH). In short,
this should be as fast as a good home internet connection.

So far, no smartphones support 5G because there aren't any mainstream 5G networks to which they can
connect. Once these networks begin rolling out, we'll begin to see smartphones with 5G support. When things
hit the mainstream in kind of widespread capacity, across regions and countries, is anyone's guess. Let's hope
it's worth the wait.

CRC32 Checksum With the KBOOT Bootloader
In Flash-Resident USB-HID Bootloader with the NXP Kinetis K22 Microcontroller, I presented how I’m using
the tinyK22 (or FRDM-K22F) with a flash resident USB HID bootloader. To make sure that the loaded
application is not corrupted somehow, it is important to verify it with a Cyclic Redundancy Checksum (CRC).
The NXP KBOOT Bootloader can verify such a CRC, but how to generate and use one is not really obvious (at
least to me), so this article explains how to generate that CRC.

Fa

] bl_app_crc_check.c [§] startup_MK22F51212.5 32 | [g] bl_main.c [€] erc32.
.1ONg UETAULTLSK [T
.long DefaultIsR

#ifdef BL_HAS BOOTLOSDER_CONFIG

__bootloaderConfigurationirea ; 9x3cd
.long "kcfg’ S/ [@@:83] tag - Tag value used to
.long BxE7BEE3GD
.long Bx8aaaC4aa FIfo[@4:87] crcstartAddress
.long BxaaaaaCaa Ff [@8:8b] crcByteCount

.long BxD63BCEE4 i :8f] crcExpectedvalue
Lbyte @xFF I :18] enabledPeripherals
.byte BxFF £ :11] i2cSlavelddress
.short SaaEE £f [12:13] peripheralDetectionTj
.short BxFFFF r :15]

CRC Values for KBOOT

This article explains how to calculate the CRC32 for KBOOT, both from binary and S-Record files, and how to
insert the values into the BCA (Bootloader Configuration Area). Additionally, it gives tips for debugging the
bootloaded application.

Bootloader Configuration Area (BCA)

The bootloader is configured with a BCA (Bootloader Configuration Area). As explained in Getting Started:
ROM Bootloader on the NXP FRDM-KL03Z Board, it configures the ROM bootloader. That ROM bootloader
for the KL0O3Z does not implement the checksum feature, so | would have to build a flash-flash resident
bootloader as explained in Flash-Resident USB-HID Bootloader with the NXP Kinetis K22 Microcontroller.
For the flash-resident bootloader, the BCA has part of the application to be loaded as well and located at offset
0x3C0 — right after the vector table located at offset 0x0000.

IJCRT1802732 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 340

http://www.ijcrt.org/
https://www.engadget.com/2017/02/25/itu-draft-5g-specs/?mc_cid=ad7633eb95&mc_eid=d19d2c2af2
https://mcuoneclipse.com/2018/03/03/flash-resident-usb-hid-bootloader-with-the-nxp-kinetis-k22-microcontroller/
https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://mcuoneclipse.com/2017/07/12/getting-started-rom-bootloader-on-the-nxp-frdm-kl03z-board/
https://mcuoneclipse.com/2017/07/12/getting-started-rom-bootloader-on-the-nxp-frdm-kl03z-board/
https://mcuoneclipse.com/2018/03/03/flash-resident-usb-hid-bootloader-with-the-nxp-kinetis-k22-microcontroller/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

So if the application gets loaded at 0OxC000 (as used in this tutorial), the BCA is located at 0XC3CO0. That BCA
can be implemented as a struct in C as in Getting Started: ROM Bootloader on the NXP FRDM-KL03Z
Board or it could be part of the assembly code e.qg. in the startup file as in this tutorial:

Bootloader Configuration Area

The CRC start address, size in bytes and the expected CRC values are just behind the tag bytes:
e 0x3c0 + 0x4: [04:07] crcStartAddress
e 0x3c0 + 0x8: [08:0b] crcByteCount
e 0x3c0 + 0xC: [0c:0f] crcExpectedValue

The question is: How do we calculate that expected CRC value?

CRC Value With KinetisFlashTool
One possibility to calculate the expected CRC values is to use the Kinetis Flash Tool. In the tool, browse for the
binary (.bin) file (which is the only supported format) and press the Config button:

IJCRT1802732 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 341

http://www.ijcrt.org/
https://mcuoneclipse.com/2017/07/12/getting-started-rom-bootloader-on-the-nxp-frdm-kl03z-board/
https://mcuoneclipse.com/2017/07/12/getting-started-rom-bootloader-on-the-nxp-frdm-kl03z-board/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

7 KinetisFlashTool = %

Port Set Update Flash Utiities BCA Utiities
QOUART @UuSSHD

e W] Image File: | C:\tmp\tinyk22_KBOOT ed_binky_2Hz. v | {{ Browse)

pID: 0)(0073 e BCA Ha: ;68636661rr: STrFTT rr?rrrrrrr Ty

!FFFFBBBFFFFFFFFFFFFFFFF:FFFFFFF
C . :TllIllllIII-IIIIIIII"'TTT’IIIII

AEERREEEEEEEEEEEAEEEEEREEERREERE N

- D

Bootloader Version:
Protocol Version:
Security State:
Fiash Size:
Flash Sector: Log
St oy B
Reserved Regions: Update image successfulh{'
e e e
RAM: from Disconnected from device!
to Read BCA data from image fis.

Warning: Currently, only binary file is supported!
Read BCA data from image fe.

Config in KinetisFlashTool
In the dialog, enable the CRC Check with the image address:

IJCRT1802732 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 342

http://www.ijcrt.org/
https://mcuoneclipse.files.wordpress.com/2018/03/crc-check-enabled.png

www.ijcrt.org

© 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

Kinetis Bootloader Configuration

Tag
Tag

Crc Check
Enable
Peripheral

LISE

CAM

OTFAD

Tirneout

[+] Timeout 5000 ms
Image Address | Ox0000C000

[]Enable Direct Boot

UART 12c

[IviD 0x1542 []PID | 0x0073 []USE String Pointer | 0x00000000

(™I | 0x123

[] Disable Detection

OxFF
0x3
Clock
[]Enable High Speed
I2C

QSPI

(12 Slave Address] QsPI Config Pointer | 0x00000000

MMCAL

[]key Elob Pointer []MMCAU Pointer | 0x00000000

Generate C Code

LUSE

S00KHz 1MHz Specify

Ox7

Cancel

CRC value

But this is a very painful process, and only works with .bin (Binary) files.

CRC With S-Record Files
A better approach is using the srec_cat utility (CRC Checksum Generation with ‘SRecord’ Tools for GNU and

Eclipse):

srec_cat tinyK22_KBOOT led_demo.srec -fill Oxff 0xc000 Oxd000 -crop 0xc400 0xDO0OO -Bit_Reverse -

CRC32LE 0x1000 -Bit_Reverse -XOR 0xff -crop 0x1000 0x1004 -Output - -hex_dump

Kudos go to Robert Poor (see https://community.nxp.com/thread/462397) who has found out the correct

command line to generate the CRC32 needed by KBOOT.
o -fill OXFF 0xC000 0xDO0O00: fill memory from 0xC400..0xD000 with Oxff.

IJCRT1802732

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 343

http://www.ijcrt.org/
https://mcuoneclipse.com/2015/04/26/crc-checksum-generation-with-srecord-tools-for-gnu-and-eclipse/
https://mcuoneclipse.com/2015/04/26/crc-checksum-generation-with-srecord-tools-for-gnu-and-eclipse/
https://community.nxp.com/thread/462397

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

e -crop 0xc400 0xDO0QO: just keep the area for the CRC calculation. This does not include the vector table
and BCA itself.
o -Bit_Reverse -CRC32LE 0x1000 -Bit_Reverse -XOR O0xff: used to generate the correct CRC32 as
expected by KBOOT and store it the given address.
e -crop 0x1000 0x1004 -Output -HEX_DUMP: Crop everything around the generated CRC32 and dump
the output to the console.
Ideally, the vector table at OxC000 and the BCA at 0xC3CO would be included into the CRC, but
KBOOT does not support this, so for simplicity, | keep it excluded from the CRC calculation.
To find out the size, use the linker map file or use srec_info:
srec_info inputfile.srec

Which gives something like:

Format: Motorola S-Record

Header: "tinyK22_KBOOT _led_demo.srec"
Execution Start Address: 0000C4D9

Data: C000 - CA2B

This then produces something like this:

srec_cat tinyK22_KBOOT led_demo.srec -fill Oxff 0xcO00 Oxd00O -crop 0xc400 0xd000 -Bit Reverse -
CRC32LE 0x1000 -Bit_Reverse -XOR 0xff -crop 0x1000 0x1004 -Output - -hex_dump

00001000: D6 88 C6 B4 #V.FA

The CRC32 is 0xD688C6B4.
That value with the number of bytes and start address then can be entered into the sources like this:

Update Flash Utilities BCA Utllites

Image File: l C:\tmp\tinyK22_XBOOT _led_blinky_2Hz_ v] Browse

BCAHEX: |6B63666700C000002C0AD0DDEDDEA24C

FFFF8813FFFFFFFFFFA H—H—r—r—ﬁ
FFFFE FFFFFE FF

CRC
0x0000C000 > Ml 0x4CA2DEED

Vs

Application CRC Values

However, this would require a recompilation of the application. So an easier way is to directly add the CRC32
to the .srec file:

srec_cat -generate Oxc3cc Oxc3d0 -constant-l-e 0xD688C6B4 4 tinyK22 KBOOT _led_demo.srec -exclude
0Oxc3cc 0xc3d0 -Output_Block_Size 16 -output newWithCRC32.srec

IJCRT1802732 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 344

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

Then load the new file with the KinetisFlashTool:

Kinetis Bootloader Configuration

Tag Boot Tirneout

Tag [|Enable Direct Boot Timeout | 5000| ms
Crc Check

Enable Image Address | Ox0000C000
Peripheral

UART 12c SPI CAN LUSE

LUSB
[IviD 0x1542 []PID | 0x0073 []USE String Pointer | 0x00000000

CAN
(™I | 0x123 CR¥ID | 0x321

[] Disable Detection 125KHz 250KHz S00KHz 1MHz Specify

PREDIY | OxFF PSEG] Ox7 PSEGZ 0x7
BRI 0x3 PROPSEG Ox7
Clock

[]Enable High Speed Clock Divider | 0

12 05PI
[]12C Slave Address | 0x10] QsPI Config Pointer | 0x00000000
OTFAD MMCAL
[Ikey Blob Pinter | 0x00000000 []MMCAU Pointer | 0x00000000
Reload OK Cancel

Generate C Code

Updating with SRecord Files
The CRC check can be debugged in the Bootloader inside the function is_application_crc_check_pass() inside
bl _app_crc_check.c:

IJCRT1802732 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 345

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

7 KinetisFlashTool » X
Port Set Update Flash Utiites BCA Utiities
QUART @USSHID
viD: [m Image File: | C:\tmp\tinyK22_KBOOT led_demo.srec v Browse
PID: |Ox0073 raraet Addre 0x0000C000 [auto Connect after update
Reset (OErase Al to Unlock
(O Unlock using Backdoor Key c’/update
Status
Backdoor kK= 0102030405060708

Bootloader Version: K2.0.0 e —

Protocol Version:
Security State: UNSECURE

Fiash Size: 512KB
Flash Sector: 2KB Log
RAM Size: Device informaton is updated! "~
e san Start update progress......
Reserved Regions: Updating image......
Hash: from 0x0 Update image successfully!
' Reset device successfully!
to Ox6FFF Update process is completed.
RAM: from OxIFFFO000 5 i ol it

to Ox IFFF3E1F
Connected to device successfully!
Collecting device information......
Device information is updated!

Code in Bootloader to Check CRC

CRC32 With Binary Files

Here is how to show the CRC fields of the BCA inside a binary file:

srec_cat tinyK22_KBOOT _led_demo.bin -binary -crop 0x3c0 0x3d0 -output - -hex_dump

This gives:
000003C0: 6B 63 66 67 00 C4 00 00 00 0C 00 00 B4 C6 88 D6 #kcfg.D......AF.V

IJCRT1802732 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 346

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

(] vl app_cre_chacke &l | (8] stantup MK2ES1212S LG B mang . ered2c L bl app crc chackh

tore_t "propertyStare e« g bootloaderContext.propertylnterface-»store;
KreCheckinual(d 1= propertyStore-rcreCheckStatus)

isCrcCheckPassed « false;

if (is_crc_check_address_valid(8propertyStore->configurationdata))

wint3d_t calculated ¢ = calculave_application _cre3(

(crc_checksum heoder t *)8propertyStore-sconfigurationdsts, kBcotlooderConfigdreaiddress);

’g i€ (catculated crc l= ‘ranﬁta-)cmuﬂrnimﬂan.‘mm]ﬂ“i
- {

ore Expreszion Type Value

propertyst
’ 09 propertyStore->configurstionD uint32_t Ondb83cEs
else
{
isCrecCheckPas)
propertysStore

I
else $ »
{ {Nawe : propertyst

propertyStore-scr|

}

#1f BL_FEATURE_CRC_ASSERT
if (TisCreCheckPassed
{

assert_pin_to_ind Octal:832632143264
}

Nendif

return LaCreCheckPassed;

Inspecting values in a binary file

To calculate the CRC32 value from a Binary, | use the following command line:

srec_cat tinyK22_KBOOT _led_demao.bin -binary -fill Oxff 0x0000 0x1000 -crop 0x0400 0x1000 -Bit_Reverse
-CRC32LE 0x1000 -Bit_Reverse -XOR 0xff -crop 0x1000 0x1004 -Output - -hex_dump

00001000: 52 04 06 B8 #.c"B

It first fills the memory from 0x0000 to 0x1000 with the Oxff filler, then cuts out the area between 0x400 to
0x1000, calculates the checksum and issues it on the console.

Then add it to a binary. Below is the command line to insert that CRC32 value into the binary file at offset
0x3C4:

srec_cat -generate 0x3cc 0x3d0 -constant-b-e 0x52E406B8 4 tinyK22_KBOOT _led _demo.bin -binary -exclude
0x3cc 0x3d0 -output newWithCRC32.bin -Binary

CRC Checks and Debugging With ‘Software’ Breakpoints

There is one potential problem with the CRC calculation done by the bootloader: If your debugger probe
modifies the flash memory for setting breakpoints (e.g. Segger J-Link can do this to get ‘unlimited’ breakpoints
(see Software and Hardware Breakpoints, then this is changing the code, and as such invalidates the CRC
checksum/check. So if loading and CRC-checking application code, make sure you don’t have any breakpoints
set in that area.

Automating

This article describes the manual steps to determine the CRC value and then add it to the application. For
automating things with a Python script, see the work of Robert Poor at https://github.com/rdpoor/srec-crc.
Conclusion

IJCRT1802732 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 347

http://www.ijcrt.org/
https://mcuoneclipse.com/2012/07/29/software-and-hardware-breakpoints/
https://github.com/rdpoor/srec-crc

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

Adding a CRC32 check in the bootloader makes the process more reliable, as it can detect bits in the loaded
image. Knowing the correct polynomial and CRC calculation way is not always straightforward. Kudos to
Robert Poor who has found out how to create the CRC32 for KBOOT. I’'m now able to generate the checksum
both from S19 and binary files. I’'m doing things semi-automated (calculate the CRC and insert it into the file),
and if | find time, | plan to automate it further. Until then, have a look how Robert is automating it (see the
previous section).
The projects used in this tutorial are available on GitHub (see the links at the end of this article).
Happy checking!
Reference:

» Projects used in this Tutorial on GitHub:
https://github.com/ErichStyger/mcuoneclipse/tree/master/Examples/KDS/tinyK22
Flash-Resident USB-HID Bootloader with the NXP Kinetis K22 Microcontroller
Generating CRC-32 for KBOOT (by Robert Poor): https://community.nxp.com/thread/462397
How to automate CRC generation (by Robert Poor): https://github.com/rdpoor/srec-crc
CRC Checksum Generation with ‘SRecord’ Tools for GNU and Eclipse
Software and Hardware Breakpoints

YV VY VYV

IJCRT1802732 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 348

http://www.ijcrt.org/
https://github.com/ErichStyger/mcuoneclipse/tree/master/Examples/KDS/tinyK22
https://mcuoneclipse.com/2018/03/03/flash-resident-usb-hid-bootloader-with-the-nxp-kinetis-k22-microcontroller/
https://community.nxp.com/thread/462397
https://github.com/rdpoor/srec-crc
https://mcuoneclipse.com/2015/04/26/crc-checksum-generation-with-srecord-tools-for-gnu-and-eclipse/
https://mcuoneclipse.com/2012/07/29/software-and-hardware-breakpoints/

